No. of Printed Pages : 5

Sem-I-Math-CC-II(R&B)

2023

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. The symbols used have their usual meaning.

GROUP - A

1. Answer <u>all</u> questions and fill in the blanks as required. [1 × 10]

(a) The proposition $P \cap P$ is equivalent to _____.

- (b) If $A \subset B$, then A B = _____.
- (c) Define partial ordering of a set.
- (d) Negation of $\exists x \forall y \sim p(x, y)$ is _____.
- (e) The sum of the co-efficient in the expansion of (x + y + z)¹⁰ is _____.
- (f) Write Pigeonhole principle (statement only).
- (g) The equation $a_n a_{n-1} a_{n-2} = 0$ is a recurrence relation of order 2. (T / F)

(h) The generating function for the sequence

 $\left\{1, 1, \frac{1}{2!}, \frac{1}{3!}, \frac{1}{4!}, \dots\right\}$ is _____

Rank of a null matrix is _____.

(i) Define Kernel of a matrix.

(k) How many edges the graph K_{3, 6} has ?

(I) A vertex of degree zero is called _____ vertex.

GROUP - B

2. Answer any eight of the following.

- (a) Let A, B, C are three sets. Then prove that $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- (b) Show that $\lfloor x + n \rfloor = \lfloor x \rfloor + n$, for any real no. x and n.
- (c) Construct truth table for $(p \land q) \lor ((\sim p) \rightarrow q)$.
- (d) How many primes are less than 200 ? Explain your answer.
- (e) How many pairs of dance partner can be selected from a group of 12 women and 20 men ?

[2 × 8

- (f) Prove that the matrix $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ is orthogonal.
- (g) Prove that the determinant of an idempotent matrix is either 0 or 1.
- (h) Find the eigen values of $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$.
- (i) A graph has degree sequence 5, 5, 4, 4, 3, 3, 3, 3. How many edges does it have ?
- (j) Define Hamiltonian Graphs.

GROUP - C

3. Answer <u>any eight</u> of the following.

[3 × 8

- (a) Prove that "if a² is an even integer, then a is an even integer" using method of contrapositive.
- (b) Show that Z is countably infinite and find |Z|.
- (c) Prove that if ac ≡ bc mod(n) and gcd(c, n) = 1 then a ≡ b (mod n)
- (d) Prove that $4^n > n^4 \forall$ integers $n \ge 5$.
- (e) Solve $a_n = 6a_{n-1} 9a_{n-2}$, $n \ge 2$, given $a_0 = -5$, $a_1 = 3$

(f) Express the matrix
$$A = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix}$$
 as the sum of a sy-

mmetric and skew symmetric matrix.

(g) Prove that
$$\begin{vmatrix} x+a & b & c & d \\ a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{vmatrix} = x^3(x+a+b+c+d).$$

- (h) Every invertible matrix possesses a unique inverse.
- (i) Prove that any graph has even number of odd vertices.
- (j) Show that K_5 is not planar.

<u>GROUP - D</u>

Prove that if A be a non-empty set and ~ be an equivalence relation on A. Let a, b ∈ A. Then the equivalence classes a and b are either equal or disjoint.

17

AP

5. State and prove Fermat's Little Theorem.

APVN-KNJ-Sem-I-23-Math(CC-2)/50

- 6. Using mathematical Induction prove that $a^n b^n$ is divisible by a b, for $a, b \in \mathbb{Z}$ and $a b \neq 0$, $n \ge 1$. [7]
- Reduce the following matrix into its normal form and find its Rank.

$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$

8. Determine the consistency of the given system :

$$x_{1} + 3x_{2} = 2$$

$$x_{2} - 3x_{4} = 3$$

$$-2x_{2} + 3x_{3} + 2x_{4} = 1$$

$$3x_{1} + 7x_{4} = -5.$$

Prove that Isomorphic graphs have the same number of components.

[7

10. What is the total number of integers with distinct digits that exceed 5500 and do not contain 0, 7, 9?